Programmierter Zelltod/Literatur

Wechseln zu: Navigation, Suche

Auf dieser Liste wird Literatur zum Programmierten Zelltod gesammelt.

Inhaltsverzeichnis A B C D E F G H I J K L M N O P Q R S T U V W X Y Z


  • Adam D., Heinrich M., Kabelitz D., & Schütze S. (2002) Ceramide: does it matter for T cells? Trends Immunol. 23, 1-4.
  • Adam D., Wiegmann K., Adam-Klages S., Ruff A., & Krönke M. (1996) A novel cytoplasmic domain of the p55 tumor necrosis factor receptor initiates the neutral sphingomyelinase pathway. J.Biol.Chem. 271, 14617-14622.
  • Almasan A. & Ashkenazi A. (2003) Apo2L/TRAIL: apoptosis signaling, biology, and potential for cancer therapy. Cytokine Growth Factor Rev. 14, 337-348.
  • Ameisen J.C. (1996) The origin of programmed cell death. Science 272, 1278-1279.
  • Ameisen J.C. (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death.Differ. 9, 367-393.
  • Andrieu-Abadie N., Gouaze V., Salvayre R., & Levade T. (2001) Ceramide in apoptosis signaling: relationship with oxidative stress. Free Radic.Biol.Med. 31, 717-728.
  • Annis M.G., Zamzami N., Zhu W., Penn L.Z., Kroemer G., Leber B., & Andrews D.W. (2001) Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 20, 1939-1952.


  • Basu S., Bayoumy S., Zhang Y., Lozano J., & Kolesnick R. (1998a) BAD enables ceramide to signal apoptosis via Ras and Raf-1. J.Biol.Chem. 273, 30419-30426. Basu S. & Kolesnick R. (1998b) Stress signals for apoptosis: ceramide and c-Jun kinase. Oncogene 17, 3277-3285.
  • Black E.J., Street A.J., & Gillespie D.A. (1991) Protein phosphatase 2A reverses phosphorylation of c-Jun specified by the delta domain in vitro: correlation with oncogenic activation and deregulated transactivation activity of v-Jun. Oncogene 6, 1949-1958.


  • Cairns J. (2002) A DNA damage checkpoint in Escherichia coli. DNA Repair (Amst) 1, 699-701.
  • Cauwels A., Janssen B., Waeytens A., Cuvelier C., & Brouckaert P. (2003) Caspase inhibition causes hyperacute tumor necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat.Immunol. 4, 387-393.
  • Chalfant C.E., Ogretmen B., Galadari S., Kroesen B.J., Pettus B.J., & Hannun Y.A. (2001) FAS activation induces dephosphorylation of SR proteins; dependence on the de novo generation of ceramide and activation of protein phosphatase 1. J.Biol.Chem. 276, 44848-44855.
  • Chao R., Khan W., & Hannun Y.A. (1992) Retinoblastoma protein dephosphorylation induced by D-erythro-sphingosine. J.Biol.Chem. 267, 23459-23462.
  • Chautan M., Chazal G., Cecconi F., Gruss P., & Golstein P. (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr.Biol. 9, 967-970.
  • Chinnaiyan A.M., O'Rourke K., Tewari M., & Dixit V.M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512.
  • Chinnaiyan A.M., Tepper C.G., Seldin M.F., O'Rourke K., Kischkel F.C., Hellbardt S., Krammer P.H.,
  • Peter M.E., & Dixit V.M. (1996) FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J.Biol.Chem. 271, 4961-4965.
  • Cikala M., Wilm B., Hobmayer E., Bottger A., & David C.N. (1999) Identification of caspases and apoptosis in the simple metazoan Hydra. Curr.Biol. 9, 959-962.
  • Corda S., Laplace C., Vicaut E., & Duranteau J. (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am.J.Respir.Cell Mol.Biol. 24, 762-768.
  • Cregan S.P., Fortin A., MacLaurin J.G., Callaghan S.M., Cecconi F., Yu S.W., Dawson T.M., Dawson V.L., Park D.S., Kroemer G., & Slack R.S. (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J.Cell Biol. 158, 507-517.
  • Cremesti A., Paris F., Grassme H., Holler N., Tschopp J., Fuks Z., Gulbins E., & Kolesnick R. (2001) Ceramide enables fas to cap and kill. J.Biol.Chem. 276, 23954-23961.


  • Darios F., Lambeng N., Troadec J.D., Michel P.P., & Ruberg M. (2003) Ceramide increases mitochondrial free calcium levels via caspase 8 and Bid: role in initiation of cell death. J.Neurochem. 84, 643-654.
  • Dbaibo G.S., Pushkareva M.Y., Jayadev S., Schwarz J.K., Horowitz J.M., Obeid L.M., & Hannun Y.A. (1995) Retinoblastoma gene product as a downstream target for a ceramide-dependent pathway of growth arrest. Proc.Natl.Acad.Sci.U.S.A 92, 1347-1351.
  • Deng X., Ito T., Carr B., Mumby M., & May W.S., Jr. (1998) Reversible phosphorylation of Bcl2 following interleukin 3 or bryostatin 1 is mediated by direct interaction with protein phosphatase 2A. J.Biol.Chem. 273, 34157-34163.
  • Dixit V.M. (1999) RIPs: an emerging family of kinases involved in pro-inflammatory and apoptotic signaling. Cold Spring Harb.Symp.Quant.Biol. 64, 359-362.
  • Dobrowsky R.T., Kamibayashi C., Mumby M.C., & Hannun Y.A. (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J.Biol.Chem. 268, 15523-15530.
  • Doerfler P., Forbush K.A., & Perlmutter R.M. (2000) Caspase enzyme activity is not essential for apoptosis during thymocyte development. J.Immunol. 164, 4071-4079.
  • Dressler K.A. & Kolesnick R.N. (1990) Ceramide 1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. Synthesis via ceramide from sphingomyelin. J.Biol.Chem. 265, 14917-14921.
  • Du C., Fang M., Li Y., Li L., & Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.


  • Ekert P.G., Silke J., & Vaux D.L. (1999) Caspase inhibitors. Cell Death.Differ. 6, 1081-1086.


  • Faccio L., Fusco C., Chen A., Martinotti S., Bonventre J.V., & Zervos A.S. (2000) Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J.Biol.Chem. 275, 2581-2588.
  • Ferrari D., Stepczynska A., Los M., Wesselborg S., & Schulze-Osthoff K. (1998) Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during. J.Exp.Med. 188, 979-984.
  • Fiers W., Beyaert R., Boone E., Cornelis S., Declercq W., Decoster E., Denecker G., Depuydt B., De Valck D., De Wilde G., Goossens V., Grooten J., Haegeman G., Heyninck K., Penning L., Plaisance S., Vancompernolle K., van Criekinge W., Vandenabeele P., Vanden Berghe W., van de C.M., Vandevoorde V., & Vercammen D. (1995) TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J.Inflamm. 47, 67-75.
  • Fiers W., Beyaert R., Declercq W., & Vandenabeele P. (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719-7730.
  • Fischer U., Jänicke R.U., & Schulze-Osthoff K. (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death.Differ. 10, 76-100.
  • Fröhlich K.U. & Madeo F. (2000) Apoptosis in yeast—a monocellular organism exhibits altruistic behaviour. FEBS Lett. 473, 6-9.


  • Goossens V., De Vos K., Vercammen D., Steemans M., Vancompernolle K., Fiers W., Vandenabeele P., & Grooten J. (1999) Redox regulation of TNF signaling. Biofactors 10, 145-156.
  • Gray C.W., Ward R.V., Karran E., Turconi S., Rowles A., Viglienghi D., Southan C., Barton A., Fantom K.G., West A., Savopoulos J., Hassan N.J., Clinkenbeard H., Hanning C., Amegadzie B., Davis J.B., Dingwall C., Livi G.P., & Creasy C.L. (2000) Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur.J.Biochem. 267, 5699-5710.


  • Hannun Y.A. (1996) Functions of ceramide in coordinating cellular responses to stress. Science 274, 1855-1859.
  • Heinrich M., Neumeyer J., Jakob M., Hallas C., Tchikov V., Winoto-Morbach S., Wickel M., Schneider-Brachert W., Trauzold A., Hethke A., & Schütze S. (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death.Differ. advance online publication 23 January 2004.
  • Heinrich M., Wickel M., Schneider-Brachert W., Sandberg C., Gahr J., Schwandner R., Weber T., Saftig P., Peters C., Brunner J., Krönke M., & Schütze S. (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252-5263.
  • Heinrich M., Wickel M., Winoto-Morbach S., Schneider-Brachert W., Weber T., Brunner J., Saftig P., Peters C., Krönke M., & Schütze S. (2000) Ceramide as an activator lipid of cathepsin D. Adv.Exp.Med.Biol. 477, 305-315.
  • Hofmann K. & Dixit V.M. (1998) Ceramide in apoptosis—does it really matter? Trends Biochem.Sci. 23, 374-377.
  • Holler N., Zaru R., Micheau O., Thome M., Attinger A., Valitutti S., Bodmer J.L., Schneider P., Seed B., & Tschopp J. (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat.Immunol. 1, 489-495.
  • Huwiler A., Brunner J., Hummel R., Vervoordeldonk M., Stabel S., van den B.H., & Pfeilschifter J. (1996) Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc.Natl.Acad.Sci.U.S.A 93, 6959-6963.


  • Jäättelä M. & Tschopp J. (2003) Caspase-independent cell death in T lymphocytes. Nat.Immunol. 4, 416-423.
  • Jaffrezou J.P., Laurent G., & Levade T. (2002) Ceramide in regulation of apoptosis. Implication in multitoxicant resistance. Subcell.Biochem. 36, 269-284.
  • Jin C. & Reed J.C. (2002) Yeast and apoptosis. Nat.Rev.Mol.Cell Biol. 3, 453-459.


  • Karasuyama H. & Melchers F. (1988) Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur.J.Immunol. 18, 97-104.
  • Kelliher M.A., Grimm S., Ishida Y., Kuo F., Stanger B.Z., & Leder P. (1998) The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity. 8, 297-303.
  • Kerr J.F., Wyllie A.H., & Currie A.R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br.J.Cancer 26, 239-257.
  • Kim S.O. & Han J. (2001a) Pan-caspase inhibitor zVAD enhances cell death in RAW246.7 macrophages. J.Endotoxin.Res. 7, 292-296.
  • Kim S.O., Ono K., & Han J. (2001b) Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. Am.J.Physiol Lung Cell Mol.Physiol 281, L1095-L1105.
  • Kim Y. & Seol D.W. (2003) TRAIL, a mighty apoptosis inducer. Mol.Cells 15, 283-293.
  • Kimura K., Markowski M., Edsall L.C., Spiegel S., & Gelmann E.P. (2003) Role of ceramide in mediating apoptosis of irradiated LNCaP prostate cancer cells. Cell Death.Differ. 10, 240-248.
  • Kolesnick R. & Hannun Y.A. (1999) Ceramide and apoptosis. Trends Biochem.Sci. 24, 224-225.
  • Koonin E.V. & Aravind L. (2002) Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death.Differ. 9, 394-404.
  • Künstle G., Hentze H., Germann P.G., Tiegs G., Meergans T., & Wendel A. (1999) Concanavalin A hepatotoxicity in mice: tumor necrosis factor-mediated organ failure independent of caspase-3-like protease activation. Hepatology 30, 1241-1251.
  • Kuznetsov S.G., Anton-Erxleben F., & Bosch T.C. (2002) Epithelial interactions in Hydra: apoptosis in interspecies grafts is induced by detachment from the extracellular matrix. J.Exp.Biol. 205, 3809-3817.


  • Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
  • Lamkanfi M., Declercq W., Kalai M., Saelens X., & Vandenabeele P. (2002) Alice in caspase land. A phylogenetic analysis of caspases from worm to man. Cell Death.Differ. 9, 358-361.
  • Lang-Rollin I.C., Rideout H.J., Noticewala M., & Stefanis L. (2003) Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J.Neurosci. 23, 11015-11025.
  • Leist M. & Jäättelä M. (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat.Rev.Mol.Cell Biol. 2, 589-598.
  • Levade T. & Jaffrezou J.P. (1999) Signalling sphingomyelinases: which, where, how and why? Biochim.Biophys.Acta 1438, 1-17.
  • Lewis J., Devin A., Miller A., Lin Y., Rodriguez Y., Neckers L., & Liu Z.G. (2000) Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. J.Biol.Chem. 275, 10519-10526.
  • Li P., Nijhawan D., Budihardjo I., Srinivasula S.M., Ahmad M., Alnemri E.S., & Wang X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-489.
  • Liu C.Y., Takemasa A., Liles W.C., Goodman R.B., Jonas M., Rosen H., Chi E., Winn R.K., Harlan J.M., & Chuang P.I. (2003) Broad-spectrum caspase inhibition paradoxically augments cell death in TNF-alpha -stimulated neutrophils. Blood 101, 295-304.
  • Lozano J., Berra E., Municio M.M., Diaz-Meco M.T., Dominguez I., Sanz L., & Moscat J. (1994) Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J.Biol.Chem. 269, 19200-19202.
  • Luo X., Budihardjo I., Zou H., Slaughter C., & Wang X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490.
  • Lüschen S., Ussat S., Scherer G., Kabelitz D., & Adam-Klages S. (2000) Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J.Biol.Chem. 275, 24670-24678.


  • Madeo F., Herker E., Maldener C., Wissing S., Lachelt S., Herlan M., Fehr M., Lauber K., Sigrist S.J., Wesselborg S., & Frohlich K.U. (2002) A caspase-related protease regulates apoptosis in yeast. Mol.Cell 9, 911-917.
  • Martins L.M., Iaccarino I., Tenev T., Gschmeissner S., Totty N.F., Lemoine N.R., Savopoulos J., Gray C.W., Creasy C.L., Dingwall C., & Downward J. (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J.Biol.Chem. 277, 439-444.
  • Miura M., Zhu H., Rotello R., Hartwieg E.A., & Yuan J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75, 653-660.
  • Moyed H.S. & Bertrand K.P. (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J.Bacteriol. 155, 768-775.
  • Müller G., Storz P., Bourteele S., Döppler H., Pfizenmaier K., Mischak H., Philipp A., Kaiser C., &
  • Kolch W. (1998) Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. EMBO J. 17, 732-742.
  • Municio M.M., Lozano J., Sanchez P., Moscat J., & Diaz-Meco M.T. (1995) Identification of heterogeneous ribonucleoprotein A1 as a novel substrate for protein kinase C zeta. J.Biol.Chem. 270, 15884-15891.


  • Nicholson D.W. & Thornberry N.A. (1997) Caspases: killer proteases. Trends Biochem.Sci. 22, 299-306.
  • Novak R., Braun J.S., Charpentier E., & Tuomanen E. (1998) Penicillin tolerance genes of Streptococcus pneumoniae: the ABC-type manganese permease complex Psa. Mol.Microbiol. 29, 1285-1296.
  • Nugroho F.A., Yamamoto H., Kobayashi Y., & Sekiguchi J. (1999) Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis. J.Bacteriol. 181, 6230-6237.


  • Obeid L.M., Linardic C.M., Karolak L.A., & Hannun Y.A. (1993) Programmed cell death induced by ceramide. Science 259, 1769-1771.


  • Paddison P.J., Caudy A.A., Bernstein E., Hannon G.J., & Conklin D.S. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948-958.
  • Pettus B.J., Chalfant C.E., & Hannun Y.A. (2002) Ceramide in apoptosis: an overview and current perspectives. Biochim.Biophys.Acta 1585, 114-125.


  • Roach H.I. & Clarke N.M. (2000) Physiological cell death of chondrocytes in vivo is not confined to apoptosis. New observations on the mammalian growth plate. J.Bone Joint Surg.Br. 82, 601-613.
  • Rudner J., Jendrossek V., & Belka C. (2002) New insights in the role of Bcl-2 Bcl-2 and the endoplasmic reticulum. Apoptosis. 7, 441-447.
  • Ruvolo P.P., Deng X., Carr B.K., & May W.S. (1998) A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J.Biol.Chem. 273, 25436-25442.
  • Ruvolo P.P., Deng X., Ito T., Carr B.K., & May W.S. (1999) Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A. J.Biol.Chem. 274, 20296-20300.


  • Sato S., Fujita N., & Tsuruo T. (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc.Natl.Acad.Sci.U.S.A 97, 10832-10837.
  • Schneider P., Olson D., Tardivel A., Browning B., Lugovskoy A., Gong D., Dobles M., Hertig S., Hofmann K., Van Vlijmen H., Hsu Y.M., Burkly L.C., Tschopp J., & Zheng T.S. (2003) Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J.Biol.Chem. 278, 5444-5454.
  • Schulte T.W., Akinaga S., Murakata T., Agatsuma T., Sugimoto S., Nakano H., Lee Y.S., Simen B.B., Argon Y., Felts S., Toft D.O., Neckers L.M., & Sharma S.V. (1999) Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol.Endocrinol. 13, 1435-1448.
  • Schulte T.W., Akinaga S., Soga S., Sullivan W., Stensgard B., Toft D., & Neckers L.M. (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress.Chaperones. 3, 100-108.
  • Schütze S., Machleidt T., Adam D., Schwandner R., Wiegmann K., Kruse M.L., Heinrich M., Wickel M., &
  • Krönke M. (1999) Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J.Biol.Chem. 274, 10203-10212.
  • Schütze S., Potthoff K., Machleidt T., Berkovic D., Wiegmann K., & Krönke M. (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced "acidic" sphingomyelin breakdown. Cell 71, 765-776.
  • Schwandner R., Wiegmann K., Bernardo K., Kreder D., & Krönke M. (1998) TNF receptor death domain-associated proteins TRADD and FADD signal activation of acid sphingomyelinase. J.Biol.Chem. 273, 5916-5922.
  • Sheridan J.P., Marsters S.A., Pitti R.M., Gurney A., Skubatch M., Baldwin D., Ramakrishnan L., Gray C.L., Baker K., Wood W.I., Goddard A.D., Godowski P., & Ashkenazi A. (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277, 818-821.
  • Siskind L.J., Kolesnick R.N., & Colombini M. (2002) Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J.Biol.Chem. 277, 26796-26803.
  • Smith K.G., Strasser A., & Vaux D.L. (1996) CrmA expression in T lymphocytes of transgenic mice inhibits CD95 (Fas/APO-1)-transduced apoptosis, but does not cause lymphadenopathy or autoimmune disease. EMBO J. 15, 5167-5176.
  • Smith T.J. & Foster S.J. (1995) Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168. J.Bacteriol. 177, 3855-3862.
  • Stennicke H.R., Jurgensmeier J.M., Shin H., Deveraux Q., Wolf B.B., Yang X., Zhou Q., Ellerby H.M., Ellerby L.M., Bredesen D., Green D.R., Reed J.C., Froelich C.J., & Salvesen G.S. (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J.Biol.Chem. 273, 27084-27090.
  • Stennicke H.R., Ryan C.A., & Salvesen G.S. (2002) Reprieval from execution: the molecular basis of caspase inhibition. Trends Biochem.Sci. 27, 94-101.
  • Stennicke H.R. & Salvesen G.S. (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J.Biol.Chem. 272, 25719-25723.
  • Strelow A., Bernardo K., Adam-Klages S., Linke T., Sandhoff K., Krönke M., & Adam D. (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J.Exp.Med. 192, 601-612.
  • Susin S.A., Lorenzo H.K., Zamzami N., Marzo I., Snow B.E., Brothers G.M., Mangion J., Jacotot E., Costantini P., Loeffler M., Larochette N., Goodlett D.R., Aebersold R., Siderovski D.P., Penninger J.M., & Kroemer G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446.


  • van Gurp M., Festjens N., van Loo G., Saelens X., & Vandenabeele P. (2003) Mitochondrial intermembrane proteins in cell death. Biochem.Biophys.Res.Commun. 304, 487-497.
  • van Loo G., Saelens X., van Gurp M., MacFarlane M., Martin S.J., & Vandenabeele P. (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death.Differ. 9, 1031-1042.
  • Vanden Berghe T., Kalai M., van Loo G., Declercq W., & Vandenabeele P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J.Biol.Chem. 278, 5622-5629.
  • Vanhaesebroeck B., Decoster E., Van O., X, Van Bladel S., Lenaerts A., van Roy F., & Fiers W. (1992) Expression of an exogenous tumor necrosis factor (TNF) gene in TNF-sensitive cell lines confers resistance to TNF-mediated cell lysis. J.Immunol. 148, 2785-2794.
  • Vercammen D., Beyaert R., Denecker G., Goossens V., van Loo G., Declercq W., Grooten J., Fiers W., & Vandenabeele P. (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J.Exp.Med. 187, 1477-1485.
  • Verhagen A.M., Ekert P.G., Pakusch M., Silke J., Connolly L.M., Reid G.E., Moritz R.L., Simpson R.J., & Vaux D.L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53.
  • Vogt, C. Untersuchungen über die Entwicklungsgeschichte der Geburtshelerkroete (Alytes obstetricans). 130. 1842. Solothurn: Jent und Gassman.


  • Whitesell L., Mimnaugh E.G., De Costa B., Myers C.E., & Neckers L.M. (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc.Natl.Acad.Sci.U.S.A 91, 8324-8328.
  • Widlak P., Li L.Y., Wang X., & Garrard W.T. (2001) Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: cooperation with exonuclease and DNase I. J.Biol.Chem. 276, 48404-48409.
  • Wiegmann K., Schütze S., Machleidt T., Witte D., & Krönke M. (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78, 1005-1015.
  • Wolf B.B. & Green D.R. (1999) Suicidal tendencies: apoptotic cell death by caspase family proteinases. J.Biol.Chem. 274, 20049-20052.
  • Wolff R.A., Dobrowsky R.T., Bielawska A., Obeid L.M., & Hannun Y.A. (1994) Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J.Biol.Chem. 269, 19605-19609.
  • Wu G.S., Burns T.F., Zhan Y., Alnemri E.S., & El Deiry W.S. (1999) Molecular cloning and functional analysis of the mouse homologue of the KILLER/DR5 tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor. Cancer Res. 59, 2770-2775.


  • Xing H.R. & Kolesnick R. (2001) Kinase suppressor of Ras signals through Thr269 of c-Raf-1. J.Biol.Chem. 276, 9733-9741.

Siehe auch[Bearbeiten]

Info Sign.svg Dieser Wikipedia-Artikel wurde, gemäß GFDL, CC-by-sa mit der kompletten History importiert.